PANIMALAR ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to Anna University, Chennai) Bangalore Trunk Road, Varadharajapuram, Poonamallee, Chennai – 600123

Minor Degree

DATA SCIENCE AND ANALYTICS

Curriculum & Syllabus

DEPARTMENT OF

ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

REGULATION 2023

PANIMALAR ENGINEERING COLLEGE

Department of Artificial Intelligence and Data Science

S.	COURSE CODE	COURSE TITLE	CATE		PERIO Er We		TOTAL CONTACT	CREDITS
NO.	CODE	COURSE IIILE	GORY	L	Т	Р	PERIODS	CREDITS
1.	23AD4001	Introduction to Data Science	PE	3	0	0	3	3
2.	23AD4002	Data Mining	PE	3	0	0	3	3
3.	23AD4003	Big Data Analytics	PE	3	0	0	3	3
4.	23AD4004	Data Visualization	PE	3	0	0	3	3
5.	23AD4005	Predictive Modelling	PE	3	0	0	3	3
6.	23AD4006	Image and Video Analytics	PE	3	0	0	3	3
7.	23AD4007	Text Analytics	PE	3	0	0	3	3
8.	23AD4008	Business Analytics	PE	3	0	0	3	3

MINOR DEGREE on DATA SCIENCE AND ANALYTICS

00 4 5 4004		L	Т	Ρ	
23AD4001	INTRODUCTION TO DATA SCIENCE	3	0	0	

- To acquire skills in data preparatory and preprocessing steps.
- To understand the mathematical skills in statistics.
- To learn the tools and packages in Python for data science.
- To gain knowledge to understand classification and Regression Model.
- To acquire knowledge in data interpretation and visualization techniques.

UNIT- I

UNIT- II

INTRODUCTION

Need for data science – benefits and uses – facets of data – data science process – setting the research goal – retrieving data – cleansing, integrating, and transforming data – exploratory data analysis - build the models - presenting and building applications.

DESCRIBING DATA I

Frequency distributions – Outliers – relative frequency distributions – cumulative frequency distributions – frequency distributions for nominal data – interpreting distributions – graphs – averages - mode - median - mean - averages for qualitative and ranked data - describing variability - range - variance - standard deviation - degrees of freedom - inter quartile range.

UNIT- III DESCRIBING DATA II

Normal distributions – z scores – normal curve problems – finding proportions – finding scores – correlation - scatter plots - correlation coefficient for quantitative data - computational formula for correlation coefficient - regression - regression line - least squares regression line - standard error of estimate - multiple regression equations - regression toward the mean.

UNIT- IV PYTHON FOR DATA HANDLING 9

Basics of Numpy arrays - aggregations - computations on arrays - comparisons, masks, boolean logic – fancy indexing – structured arrays – Data manipulation with Pandas – data indexing and selection - operating on data - missing data – combining datasets - aggregation and grouping.

UNIT- V

PYTHON FOR DATA VISUALIZATION

1012

Visualization with matplotlib - line plots - scatter plots - visualizing errors - density and contour plots - histograms, binnings and density - three dimensional plotting - geographic data – graph plotting using Plotly.

TOTAL: 45 PERIODS

С

3

9

9

9

9

COURSE OUTCOME(S):

Upon successful completion of the course, the students will be able to

- **CO1** Demonstrate the skills of data inspecting and cleansing.
- **CO2** Determine the relationship between data dependencies using statistics.
- **CO3** Construct data using primary tools for data science in Python.
- **CO4** Represent the useful information using mathematical skills.
- **CO5** Apply the knowledge for data describing the Data.
- **CO6** Implement real time application using visualization tools.

TEXTBOOKS:

- 1. David Cielen, Arno D. B. Meysman, and Mohamed Ali, Introducing Data Science, Manning Publications, 2016.
- 2. Robert S. Witte and John S. Witte, Statistics, Eleventh Edition, Wiley Publications, 2017.
- 3. Jake VanderPlas, Python Data Science Handbook, O'Reilly, 2016.

REFERENCE BOOKS:

1. Allen B. Downey, Think Stats: Exploratory Data Analysis in Python, Green Tea Press, 2014.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	-/	2	3	\sim	-		_	1	2	2	3	2
CO2	3	3	Æ	2	2	(2	1	2-	4	2	2	3	2
CO3	3	2	2	2	3	k - 1	Ę.	-/	5-12	1	2	2	2	3
CO4	3	2	1	2	3	15	14		E	1	2	2	3	2
CO5	3	2	1	2	2	ŝ	1-3	1	9		2	2	3	2
CO6	2	2	2	2	3	2	5	2	2	1	3	3	3	3

	Internal A	ssessment		End Semester Examinations
Assessment I (1	00 Marks)	Assessment II (1	00 Marks)	
Individual Assignment / Case Study / Seminar / Mini Project	Written Test	Individual Assignment / Case Study / Seminar / Mini Project	Written Test	Written Examinations
40	60	40	60	100
	4(0%		60 %

00454000		L	Т	Ρ	С
23AD4002	DATA MINING	3	0	0	3

• To learn the basic tasks in data mining and how they are different from knowledge discovery.

91203

- To understand simple techniques like decision trees, neural networks, and genetic methods used to find patterns in data.
- To learn how to measure similarity and differences in data for grouping and classification.
- To compare different methods to find the best way to group or classify data.
- To understand how to find useful patterns (rules) in data and check their quality.

UNIT – I INTRODUCTION TO DATA MINING

Basic Data Mining Tasks - Data Mining Versus Knowledge Discovery in Data Bases - Data Mining Issues - Data Mining Matrices - Social Implications of Data Mining - Data Mining from Data Base Perspective.

UNIT – II

DATA MINING TECHNIQUES

Data Mining Techniques – a Statistical Perspective on data mining – Similarity Measures – Decision Trees - Neural Networks - Genetic Algorithms.

UNIT – III **CLASSIFICATION METHODS**

Classification: Introduction - Statistical - Based Algorithms - Distance Based Algorithms -Decision.

UNIT – IV **CLUSTERING TECHNIQUES**

Clustering Tree - Based Algorithms - Neural Network Based Algorithms - Rule Based Algorithms - Combining Techniques: Introduction - Similarity and Distance Measures - Outliers - Hierarchical Algorithms. Partitioned Algorithms.

UNIT – V

ASSOCIATION RULES

Association Rules: Introduction - Large Item Sets - Basic Algorithms - Parallel & Distributed Algorithms - Comparing Approaches - Incremental Rules - Advanced Association Rules Techniques - Measuring the Quality of Rules.

COURSE OUTCOME(S):

Upon successful completion of the course, the students will be able to

- **CO1** Explain what data mining is and how it is different from knowledge discovery.
- CO2 Apply basic statistics and techniques like decision trees and neural networks to find patterns in data.
- CO3 Classify data using different methods such as statistical, distance-based, and rule-based techniques.
- **CO4** Group similar data using clustering methods and detect unusual data points.
- **CO5** Discover useful patterns or rules from large data sets using suitable data mining algorithms.
- **CO6** Identify the social and ethical issues involved in using data mining in real-life applications.

TEXT BOOK:

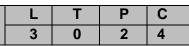
1. Data Mining: Concepts and Techniques (4th Edition, 2022) by Jiawei Han, Jian Pei, and Hanghang Tong.

REFERENCE BOOK:

1. Margaret H. Dunbam, "Data Mining Introductory and Advanced Topics", Pearson Education 2003.

9

9


9

9

CO – PO-PSO MAPPING

PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
3	2	1	1	2	1	1	-	51	42	2	2	3	2
3	3	2	2	3	-	-	-	-	-	2	2	3	3
3	3	2	2	3	5	2	Ż	Ś	-	2	2	3	3
3	3	2	2	3	-	10	25	Ş .	2	2	2	2	3
3	3	2	2	3	-			16		2	2	3	3
2	2	1	1	2	3	3	2	2	1	3	3	2	2
1		1	1	1	57	14	1.57		2.1	- 1	-		
		19		11	핏네	1Æ	15	-3	9/5	61	27		
	3 3 3 3 3 3	3 2 3 3 3 3 3 3 3 3 3 3 3 3	3 2 1 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2	3 2 1 1 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2	3 2 1 1 2 3 2 1 1 2 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3	3 2 1 1 2 1 3 3 2 2 3 - 3 3 2 2 3 - 3 3 2 2 3 - 3 3 2 2 3 - 3 3 2 2 3 - 3 3 2 2 3 - 3 3 2 2 3 -	3 2 1 1 2 1 1 3 3 2 2 3 - - 3 3 2 2 3 - - 3 3 2 2 3 - - 3 3 2 2 3 - - 3 3 2 2 3 - - 3 3 2 2 3 - - 3 3 2 2 3 - -	3 2 1 1 2 1 1 - 3 3 2 2 3 - - - 3 3 2 2 3 - - - 3 3 2 2 3 - - - 3 3 2 2 3 - - - 3 3 2 2 3 - - - 3 3 2 2 3 - - - 3 3 2 2 3 - - - 3 3 2 2 3 - - - 4 - - - - - - -	3 2 1 1 2 1 1 - 3 3 2 2 3 - - - 3 3 2 2 3 - - - 3 3 2 2 3 - - - 3 3 2 2 3 - - - 3 3 2 2 3 - - - 3 3 2 2 3 - - - - 3 3 2 2 3 - - - - 3 3 2 2 3 - - - - 3 3 2 2 3 - - - -	3 2 1 1 2 1 1 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3	3 2 1 1 2 1 1 1 - - - 2 3 3 2 2 3 - - - - 2 3 3 2 2 3 - - - - 2 3 3 2 2 3 - - - - 2 3 3 2 2 3 - - - - 2 3 3 2 2 3 - - - - 2 3 3 2 2 3 - - - - 2 3 3 2 2 3 - - - - 2 3 3 2 2 3 - - - - 2 3 3 2 2 3 - - - - 2	3 2 1 1 2 1 1 1 2 2 3 3 2 2 3 2 2 3 3 2 2 3 2 2 3 3 2 2 3 2 2 3 3 2 2 3 2 2 3 3 2 2 3 2 2 3 3 2 2 3 2 2 3 3 2 2 3 2 2 3 3 2 2 3 2 2 4 2 2 2 <t< td=""><td>3 2 1 1 2 1 1 2 2 3 3 3 2 2 3 2 2 3 3 3 2 2 3 2 2 3 3 3 2 2 3 2 2 3 3 3 2 2 3 2 2 3 3 3 2 2 3 2 2 3 3 3 2 2 3 2 2 2 2 3 3 2 2 3 2 2 3</td></t<>	3 2 1 1 2 1 1 2 2 3 3 3 2 2 3 2 2 3 3 3 2 2 3 2 2 3 3 3 2 2 3 2 2 3 3 3 2 2 3 2 2 3 3 3 2 2 3 2 2 3 3 3 2 2 3 2 2 2 2 3 3 2 2 3 2 2 3

	Internal A	\sim	End Semester Examinations	
Assessment I (1	00 Marks)	Assessment II (1	00 Marks)	
Individual Assignment / Case Study / Seminar / Mini Project	Written Test	Individual Assignment / Case Study / Seminar / Mini Project	Written Test	Written Examinations
40 60		40	60	100
	4()%		60 %

OBJECTIVES:

- To understand about big data.
- To learn and use NoSQL big data management. •
- To learn mapreduce analytics using Hadoop and related tools.
- To work with map reduce applications •
- To understand the usage of Hadoop related tools for Big Data Analytics

UNIT I UNDERSTANDING BIG DATA

What is big data – why big data – convergence of key trends – unstructured data – industry examples of big data - web analytics - big data and marketing - fraud and big data - risk and big data - credit risk management - big data and algorithmic trading - big data and healthcare - big data in medicine - advertising and big data - big data technologies .

UNIT II NOSQL DATA MANAGEMENT

Introduction to NoSQL – aggregate data models – aggregates – key-value and document data models - relationships - graph databases - schemaless databases - materialized views distribution models - sharding - master-slave replication - peer-peer replication - sharding and replication - consistency.

BASICS OF HADOOP UNIT III Data format - analyzing data with Hadoop - scaling out - Hadoop streaming - Hadoop pipes design of Hadoop distributed file system (HDFS) - HDFS concepts - Java interface - data flow -Hadoop I/O - data integrity - compression - serialization - Avro - file-based data structures.

UNIT IV MAPREDUCE APPLICATIONS

MapReduce workflows - unit tests with MRUnit - test data and local tests - anatomy of MapReduce job run - classic Map-reduce - YARN - failures in classic Map-reduce and YARN - job scheduling - shuffle and sort - task execution - MapReduce types - input formats - output formats.

UNIT V

HADOOP RELATED TOOLS

Hbase - data model and implementations - Hbase clients - Hbase examples - praxis.Cassandra cassandra data model - cassandra examples - cassandra clients - Hadoop integration. Pig - Grunt - pig data model - Pig Latin - developing and testing Pig Latin scripts. Hive - data types and file formats - HiveQL data definition - HiveQL data manipulation - HiveQL queries.

TOTAL:45 PERIODS

OUTCOMES:

After the completion of this course, students will be able to:

- **CO1** Describe big data concepts and characteristics.
- **CO2** Identify and explain real-world use cases of big data from selected business domains.
- **CO3** Explain NoSQL database systems used in big data management.
- **CO4** Install, configure, and operate Hadoop and HDFS.
- **CO5** Perform map-reduce programming for big data analytics using Hadoop.
- CO6 Use Hadoop ecosystem tools such as HBase, Cassandra, Pig, and Hive for data analytics.

9

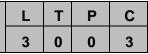
9

9

9

TEXT BOOKS:

 Michael Minelli, Michelle Chambers, and AmbigaDhiraj, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses", Wiley, 2013.
Eric Sammer, "Hadoop Operations", O'Reilley, 2012.


\

REFERENCES:

- 1. E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive", O'Reilley, 2012.
- 2. Lars George, "HBase: The Definitive Guide", O'Reilley, 2011.
- 3. Eben Hewitt, "Cassandra: The Definitive Guide", O'Reilley, 2010.
- 4. Alan Gates, "Programming Pig", O'Reilley, 2011.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	1	-	2	1		53	1	9.	2	2	2	2
CO2	2	3	2	-	2	2	NOY E	- DURA	CE 1.1	1	2	3	3	2
CO3	3	2	2	2	3	\tilde{S}	V ED	UCA	TON	AL-	2	2	2	3
CO4	3	2	2	2	3	-	5	R	2	-	2	2	2	3
CO5	3	3	3	3	3	1	-		1	2	3	2	3	3
CO6	3	3	3	2	3	2	-	-	2	2	3	3	3	3

	Internal A	End Semester Examinations		
Assessment I (10	00 Marks)	Assessment II (1	00 Marks)	
Individual Assignment / Case Study / Seminar / Mini Project	Written Test	Individual Assignment / Case Study / Seminar / Mini Project	Written Test	Written Examinations
40	60	40	60	100
	4(60 %		

- To understand the basics of Data Explorations
- To understand the basic concepts of handling variables
- To study the visualization and integration of processing with java
- To explore the data visualization using R language
- To apply various data visualization techniques for a variety of tasks

UNIT- I INTRODUCTION TO DATA EXPLORATION

EDA fundamentals - Introduction to Single variable: Distribution Variables -Numerical Summaries of Level and Spread - Scaling and Standardising – Inequality - Smoothing Time Series

UNIT-II INTRODUCING TWO VARIABLE AND THIRD VARIABLE

Relationships between Two Variables - Percentage Tables - Analysing Contingency Tables - Handling Several Batches - Scatterplots and Resistant Lines – Transformations - Introducing a Third Variable - Causal Explanations - Three-Variable Contingency Tables and Beyond.

UNIT-III BASICS OF DATA VISUALIZATION

The Seven Stages of Visualizing Data - Getting Started with Processing - Mapping - Time Series - Connections and Correlations - Scatterplot Maps - Trees, Hierarchies, and Recursion - Networks and Graphs – Acquiring Data – Parsing Data - Integrating Processing with Java.

UNIT- IV DATA EXPLORATION AND DATA VISUALIZATION IN R

Introduction to R and R Studio - The Basics of Data Exploration - Loading Data into R - Transforming Data - Creating Tidy Data- Basic Analysis- Data Visualization with ggplot2.

UNIT- V TECHNIQUES AND APPLICATIONS OF DATA EXPLORATION AND VISUALIZATION IN R

9

9

9

9

9

Basic Data Exploration Techniques - Basic Data Visualization Techniques - Visualizing Geographic Data with ggmap -, Creating a basemap, Adding operational data layers - R Markdown - Case Study – Wildfire Activity in the Western United States.

THEORY:45 PERIODS

TEXT BOOKS

- 1. Catherine Marsh, Jane Elliott, Exploring Data: An Introduction to Data Analysis for Social Scientists, Wiley Publications, 2nd Edition, 2008.
- 2. Visualizing Data: Exploring and Explaining Data with the processing Environment, O Reily Publications, 2007.
- 3. Eric Pimpler, Data Visualization and Exploration with R, Geo Spatial Training service, 2017.
- 4. Authors: Xiang Zhou, Sean, Yong Rui, Huang, Thomas S., Exploration of Visual Data, Springer Publications, 2003
- 5. Claus.O.Wlike, Fundamentals of Data Visualization, A primer on making informative and compelling Figures, O'Reily Publications, 2019
- 6. Learn R for Applied Statistics: With Data Visualizations, Regressions, and Statistics by Eric Goh Ming Hui, Apress

COURSE OUTCOMES

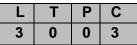
At the end of the course, the student should be able to:

CO1 Recall the fundamental concepts of Data Exploration.

CO2 Analyze Univariate and Multivariate data for effective exploration.

CO3 Explain different methods of Data Visualization.

CO4 Illustrate the integration process of Processing with Java.


CO5 Create data visualizations using R language on different datasets.

CO6 Evaluate various datasets using Data Visualization techniques.

	CO-PO-PSO MAPPING													
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	1	3	3	6 <u>0</u> 22	11		2	3	3	3	2	2	2
CO2	2	2	2	15	1	9.5	¥.5	3	2	3	1	2	3	2
CO3	2	1	2	1	1	20	15	3	2	1	2	2	2	3
CO4	2	2	2	1		X	1	1	2	1	3	2	1	3
CO5	3	1	1	2	1			3	2	1	2	2	3	3
CO6	2	1	2	2	1			2	2	2	2	2	3	3

	Internal A	ssessment		End Semester Examinations
Assessment I (10	00 Marks)	Assessment II (1	00 Marks)	
Individual Assignment / Case Study / Seminar / Mini Project	Written Test	Individual Assignment / Case Study / Seminar / Mini Project	Written Test	Written Examinations
40	60	40	60	100
	4(60 %	

PREDICTIVE MODELLING

9

9

9

COURSE OBJECTIVES

- To explain terminology, technology and applications of predictive analysis
- To apply data preparation techniques and generate appropriate association rules.
- To discuss various descriptive models, their merits, demerits and application.
- To describe various predictive modelling methods
- To introduce the text mining tools, technologies and case study which is used in day-today analytics cycle
- To learn about advanced text visualization techniques

UNIT - I INTRODUCTION TO PREDICTIVE ANALYTICS 9 Overview of Dradictive Analytics Setting up the problem. Data understanding Single veriable

Overview of Predictive Analytics - Setting up the problem - Data understanding - Single variable and multi-dimensional visualization - Statistical significance - Data audit -**Case Study: Churn prevention**.

UNIT - II DATA PREPARATION AND ASSOCIATION RULES 9

Data preparation – Variable cleaning – Feature creation – Association rules: item sets, parameters, data structure - Interestingness measures - Deploying rules - Classification from association rules -**Case Study: Hospital readmission**.

UNIT - III

MODELLING

Descriptive modeling - Principal Component Analysis - Clustering algorithms - Interpretation of descriptive models - Standard cluster model.

UNIT - IV

PREDICTIVE MODELLING

Decision trees - Logistic regression - Neural networks - K-Nearest Neighbours - Naive Bayes - Regression models: Linear and others - Case Study: Predictive web analytics.

UNIT - V

TEXT MINING

Structured vs unstructured data - Predictive modeling for text - Text mining challenges - Data preparation steps – Regular expressions – Modeling with text features – **Case Study: Survey analysis**.

TOTAL: 45 PERIODS

COURSE OUTCOMES

- CO1 Explain terminology, technology and applications of predictive analysis
- CO2 Apply data preparation techniques to effectively interpret big data
- **CO3** Discuss various descriptive models, their merits, demerits and application.
- **CO4** Describe principles of predictive analytics and apply them to achieve real, pragmatic solutions.
- **CO5** Illustrate the features and applications of text mining.
- **CO6** Apply advanced text visualization techniques.

TEXT BOOKS

- 1. Dean Abbott, "Applied Predictive Analytics-Principles and Techniques for the Professional Data Analyst", Wiley, 2014
- **2.** Jiawei Han and Micheline Kamber, Data Mining Concepts and Techniques, Third Edition, Elsevier, 2012

REFERENCES

- Conrad Carlberg, "Predictive Analytics: Microsoft Excel", 1st Edition, Que
- 1. Publishing, 2012.
- 2. Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. An Introduction to Statistical Learning with Applications in R Springer 2013
- 3. Alberto Cordoba, "Understanding the Predictive Analytics Lifecycle", Wiley, 2014

-														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	1		Y3	1	1	2	2	2	2
CO2	3	3	2	2	3	2			* 1	7-	3	2	3	3
CO3	3	3	2	2	3	2	DURANC	CHARL	1	-	3	2	3	2
CO4	3	3	3	3	3	2	CATI	ONAL	2	2	3	3	3	3
CO5	3	2	2	2	3	9	2	0-	2	-	2	2	2	3
CO6	2	2	2	2	3	2	0-	-	3	2	3	2	3	3

	Internal A	End Semester Examinations		
Assessment I (10	00 Marks)			
Individual Assignment / Case Study / Seminar / Mini Project	Written Test	Individual Assignment / Case Study / Seminar / Mini Project	Written Test	Written Examinations
40	60	40	60	100
	4(60 %		

L	Т	Ρ	С
S	0	0	3

- To understand the basics of image processing techniques for computer vision
- To learn the techniques used for image pre-processing.
- To discuss the various object detection techniques
- To understand the various Object recognition mechanisms.
- To elaborate on the video analytics techniques.
- To implement real time applications.

UNIT - I

INTRODUCTION

9

9

9

Computer Vision - Image analysis tasks - Digitization and Color Images - Data structures for image analysis - Levels of image representation - Traditional and hierarchical structures - T-pyramid - Quad tree representation using intensity homogeneity.

UNIT - II

IMAGE PRE-PROCESSING

Local pre-processing – Image smoothing – Edge detection: Zero-crossings, Canny edge detection – Parametric edge models – Frequency domain preprocessing – Line detection – Image restoration - Geometric transformations - Case study: MNIST dataset.

UNIT - III OBJECT DETECTION USING MACHINE LEARNING 9

Object detection methods – Deep Learning framework: R-CNN, Faster R-CNN, YOLO – Bounding box & IoU - Salient features - Loss functions - YOLO architecture - Motion analysis with moving edges - **Case study: Geospatial object detection**.

UNIT - IV FACE RECOGNITION AND GESTURE RECOGNITION

Face Recognition: Applications, process - DeepFace, FaceNet - Implementation using FaceNet - Gesture Recognition – Static hand gestures – Implementation of facial detection and recognition.

UNIT - V VIDEO ANALYTICS 9 Video processing – Use cases – Vanishing/exploding gradients – ResNet architecture, skip connections - Inception & GoogleNet - Improvements in Inception v2 and v3 - Case study: Event detection in airport video surveillance.

TOTAL: 45 PERIODS

COURSE OUTCOMES

- **CO1** Understand the basics of image processing techniques for computer vision and video analysis.
- **CO2** Explain the techniques used for image pre-processing.
- **CO3** Develop various object detection techniques
- **CO4** Understand the various face recognition mechanisms
- CO5 Elaborate on deep learning-based video analytics.
- **CO6** Implement in real time applications.

TEXT BOOKS

- 1. Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis, and Machine
 - Vision", 4nd edition, Thomson Learning, 2013
- 2. Vaibhav Verdhan,(2021, Computer Vision Using Deep Learning Neural Network Architectures with Python and Keras,Apress 2021(UNIT-III,IV and V)

REFERENCES

- Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer Verlag London Limited,2011
- Caifeng Shan, FatihPorikli, Tao Xiang, Shaogang Gong, "Video Analytics for Business
 - Intelligence", Springer, 2012
- **3.** D. A. Forsyth, J. Ponce, "Computer Vision: A Modern Approach", Pearson Education, 2003

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	2	3	1	NR CI	7.	-	-	3	2	2	2
CO2	3	2	2	2	310	RANCE		R)_	-	-	2	2	2	3
CO3	3	3	3	2	Egu	2		-	1	2	3	3	2	3
CO4	3	2	2	2	3	2	1	-	1	-	3	3	2	3
CO5	3	3	3	3	3	2	-	-	2	2	3	3	3	3
CO6	3	3	3	3	3	3	-	2	2	3	3	3	3	3

	Internal A	End Semester Examinations		
Assessment I (10	00 Marks)	Assessment II (1	00 Marks)	
Individual Assignment / Case Study / Seminar / Mini Project	Written Test	Individual Assignment / Case Study / Seminar / Mini Project	Written Test	Written Examinations
40	60	40	60	100
	4(60 %		

- To understand the methods for keyword extraction from documents
- To learn clustering methods for grouping of documents
- To explore the methods for classification of documents and E-mails
- To explore text visualization techniques and anomaly detection.
- To learn about Events and trends in text streams
- To learn about advanced text visualization techniques

TEXT EXTRACTION UNIT – I

Introduction - Keyword extraction techniques: candidate keywords, keyword scores, adjoining and extracted keywords - Benchmark evaluation: precision, recall, efficiency - Stoplist generation -Intelligent text extraction.

Multilingual document clustering: LSA, Tucker1, PARAFAC2, LMSA with/without term alignments -Constrained clustering with k-means - Comparison: Document Clustering vs Topic Models.

DOCUMENT CLUSTERING

UNIT – III CONTENT BASED CLASSIFICATION 9

Document classification algorithms - Spam email classification - Email classification using Nonnegative Matrix Factorization - Content-based SMS classification.

UNIT - IV ANOMALY AND TREND DETECTION 9

Text visualization: Tag clouds, authorship tracking, sentiment tracking - Visual analytics: FutureLens, scenario discovery - Anomaly detection with adaptive thresholds - Experimental insights.

UNIT - V

UNIT – II

TEXT STREAMS

Text streams: Feature extraction, event and trend detection, semantic descriptions - Topic Modeling : LSA, pLSA, LDA - Semantic embedding from Wikipedia - Dynamic sampling in text analysis.

TOTAL: 45 PERIODS

COURSE OUTCOMES

- CO1 Design text extraction techniques.
- CO₂ To apply clustering methods for grouping of documents.
- CO3 Design classification techniques for text mining
- **CO4** Apply visualization techniques and perform anomaly & trend detection.
- CO5 Perform Event operations in Text streams
- **CO6** Apply advanced text visualization techniques.

Γ	Т	Ρ	С
3	0	0	3

9

9

9

TEXT BOOKS

- 1. Michael W. Berry & Jacob Kogan, "Text Mining Applications and Theory" Wiley publications, 2010.
- 2. Aggarwal, Charu C., and ChengXiangZhai, eds., "Mining text data", Springer Science & Business Media, 2012.

REFERENCES

- 1. Gary Miner, John Elder, Thomas Hill, Dursun Deller, Andrew Fast, Robert A. Nisbet, "Practical text mining and statistical analysis for non-structured text data applications", Academic Press, 2012.
- 2. Srivastava, Ashok N., and MehranSahami, "Text mining: Classification, clustering, and applications", Chapman and Hall/CRC, 2009.
- 3. Buitelaar, Paul, Philipp Cimiano, and Bernardo Magnini, eds., "Ontology learning from text: methods, evaluation and applications", Vol. 123. IOS press, 2005.

				1.0	JO-PU	-130	WAPPI	NG						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	3	2	3	Z	3		-	-	2	2	2	3
CO2	3	3	2	2	3) -	-	-	-	-	2	2	3	3
CO3	3	3	3	2	3	-	-	-	-	-	2	2	3	3
CO4	3	2	2	2	3	1	-	-	2	1	3	2	3	3
CO5	3	2	2	2	3	-	-	2	2	2	3	3	2	3
CO6	3	2	2	2	3	2	-	-	2	1	3	2	3	3

	Internal As	End Semester Examinations		
Assessment I (10	00 Marks)			
Individual Assignment / Case Study / Seminar / Mini Project	Written Test	Individual Assignment / Case Study / Seminar / Mini Project	Written Test	Written Examinations
40	60	40	60	100
	4(60 %		

23AD4008	BUSINESS ANALYTICS	L	Т	Р	С
23704000	BUSINESS ANALTINCS	3	0	0	3

UNIT-II

- To understand the Analytics Life Cycle.
- To understand various types of analytics for Business Forecasting
- To model the supply chain management for Analytics.
- To apply analytics for different functions of a business
- To apply visualization tools for Business Analytics

UNIT- I INTRODUCTION TO BUSINESS ANALYTICS 9

Analytics and Data Science – Analytics Life Cycle – Types of Analytics – Business Problem Definition - Data Collection & Preparation - Hypothesis Generation - Modeling - Validating and Presenting Results - Interpretation - Deployment and Iteration.

Data Warehouses and Marts - Knowledge Management - Types of Decisions - Decision Support Systems - Business Intelligence - OLAP - Analytic Functions.

BUSINESS INTELLIGENCE

UNIT- III BUSINESS FORECASTING 9

Business Forecasting & Predictive Analytics – Data Mining Models: Linear Regression, Clustering, CART, Neural Networks – Data Visualization: Bar, Pie, Line, Scatter, Map, Bubble, Box & Whisker, Tree map, Heat map – Dashboard and Storyboard creation.

UNIT- IV HR & SUPPLY CHAIN ANALYTICS

HR: Planning, Recruitment, Training & Development - Supply Chain: Demand, Inventory, Supply, Logistics – Applications of Analytics in HR and Supply Chain – Predicting demand for hourly employees.

UNIT- V MARKETING AND SALES ANALYTICS

Marketing Strategy - Marketing Mix - Customer Behavior - Sales Planning - Selling Process - Applications of Analytics in Marketing and Sales.

TOTAL : 45 PERIODS

9

9

9

COURSE OUTCOMES

Upon successful completion of the course, students will be able to:

- CO1 Understand real world business problems and model with analytical solutions
- CO2 Illustrate business processes for extracting Business Intelligence
- **CO3** Apply predictive analytics for business fore-casting
- **CO4** Analyze analytics for supply chain and logistics management
- CO5 Evaluate analytics for marketing and sales
- **CO6** Use Analytics for Visualization Techniques

REFERENCES

- 1. R. Evans James, Business Analytics, 2017
- 2. R N Prasad , Seema Acharya , Fundamentals of Business Analytics
- 3. Philip Kotler and Kevin Keller, Marketing Management, 15th edition, PHI, 2016
- 4. VSP RAO, Human Resource Management, 3rd Edition, Excel Books, 2010
- 5. Mahadevan B, "Operations Management -Theory and Practice", 3rd Edition, Pearson Education, 2018.

	CO-PO-PSO MAPPING													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	2	3	2	2	-	1	1	3	3	3	2
CO2	2	2	3	2	3	1	3-	-	2	2	2	3	3	2
CO3	3	3	3	3	3	2		8-	1	2	3	3	3	2
CO4	3	3	2	2	3	3			2	2	2	3	3	2
CO5	2	2	2	2	3	EN DURA	NCE-CH	- 21	2	2	2	3	3	2
CO6	2	2	2	2	3	DI2C/	TION		3	1	3	2	3	3

	Internal A	End Semester Examinations		
Assessment I (10	00 Marks)			
Individual Assignment / Case Study / Seminar / Mini Project	Written Test	Individual Assignment / Case Study / Seminar / Mini Project	Written Test	Written Examinations
40	60	40	60	100
	4(60 %		